Technical Specifications

PDU and PDU Sequence Builder

The Protocol Data Unit (PDU) and PDU Sequence builders can be used to create, custom-built libraries of predefined traffic. These libraries can contain ATM cells and AAL1 PDUs. Cells and PDUs can be linked to form a complex library of sequences. The PDU editor can create, edit, copy, rename, and delete PDUs.

ATM Cell Editing

Header	User defined by field GFC, VPI, VCI, PT, CLP
Interface	UNI/NNI selectable
HEC	User definedAuto-calculate
Trailer	User defined by field
Payload	 User defined in hex Can be incrementing or decrementing

AAL1 PDU Editing

Header	User defined by Field CSI
Sequence Number Protection	User defined or auto-calculated
Payload	User defined in hex, can be incrementing

Encoding Options

AAL1 PDUs can be automatically encoded down to lower layer ATM cells. The user specifies the encode options to be applied during the encoding process.

ATM interface options (UNI/NNI)

- VPI
- VCI
- PT
- CLP

Traffic Generation

The transmission of the ATM Cells, PDUs and PDU sequences can be done as a single-shot or as distributed traffic. Single-shot and distributed traffic can be sent simultaneously.

Single-Shot

In single-shot operation, you can select on PDU or PDU sequence to be sent.

Cell rate	•	User selectable (0 - 100% of line rate)
Number of cells	•	Up to 2047 unique cells
Encodina	•	AAL1 to ATM cell

Distributed Channels

Up to eight independent traffic streams can be generated using predefined PDUs and PDU sequences.

Transmission	 Continuous and repetitive
Number of cells combined	• 2047 unique cells on all streams
Multiplexing	Distributed streams are multiplexed with single-shot traffic
Priority	Single-shot takes precedence over distributed traffic; stream 1 has the highest priority

Stream 1 Distribution & Parameters

Constant cell rate (CCR)	Mean load
Burst/Max Load	Burst gap length
Sawtooth	Minimum/maximum load, burst gap length
Poisson	Mean cell interarrival time

Streams 2-8

CCR • Mean load

Real-Time Measurements

Measurements can be displayed in real-time either numerically or graphically. These measurements can be recorded to disk in a Lotus 1-2-3 compatible format for storage and later use.

PDU Data Capture

Live PDU data can be captured into memory

Capture capacity	• 131,072 cells per 8 MB of capture RAM
Capture control event	Manually or on a specified trigger
Time stamping	All captured data is timestamped with the calendar time (resolution = 0.1 us)

Capture Filters

Incoming cells are filtered using up to eight Pattern Matchers. Real-time filtering determines which cells are kept for analysis.

Receive Streams

Each received cell undergoes the following reassembly and analysis process.

- Pattern matcher filtering
- · Error checking
- Reassembly
- Event triggers

Pattern Matchers

Incoming cells are matched against up to eight programmable patterns. The results are used as inputs to the trigger engine.

Patterns	• 53 byte cell
Editing forms	ATM cells, AAI1
Pattern matching	Inverted or non-inverted
Bit matching	• 0, 1 or wildcard

Trigger Event Engine

A programmable event/action matrix is provided in the CPP. It is used to trigger actions when specified events are detected.

Actions	Start/restart capturing
	 Suspend or stop capturing
	Capture cells
	 Increment counter
	Reset counter
	Start/restart timer
	Stop timer
	 Exert external trigger
	Start transmitter
Events	Pattern match (1-8)
	Cell received
	• Timer expiry (programmable 1-256ms +/- 1 ms)
	 External trigger input detected
	 Logically ORed combinations of the above
	Decode errors

Statistical Measurements

Real-time statistics can be calculated on the incoming cell streams.

- Total cells received
- Total unassigned cells
- Total cells received on a channel
- Number of pattern matches

Playback

Event streams can be reconstructed from recorded cell-streams for off-line analysis using the playback facility.

- Detection of protocol errors
- Filtering
- Cell and PDU display
- Results archiving facility

ATM Analysis

Options	UNI/NNI selectable	
Decode Errors	Invalid HEC VPI < > 0, VCI = 0	
As per ITU-T I.361		

AAL1 Analysis

Decode information

Sequence Number	CSI Sequence count
SNP	CRC-3 Parity
Payload	Hex or ASCII display

As per ITU-T 1.363

OAM F4 and F5 Analysis

OAM Decode information

Flow level	 F5 VC segment
	 F5 VC end-to-end
	 F4 VP segment
	F4 VP end-to-end
Cell type	Fault & performance management, activation, or deactivation of user management
Function type	AIS, FERF, Continuity check, Forward monitor, Backward monitor, Monitoring/reporting

As per ITU-T I.610 & T1S1.5/92-029R91